{ "id": "math/0207026", "version": "v1", "published": "2002-07-02T19:34:54.000Z", "updated": "2002-07-02T19:34:54.000Z", "title": "Integrability, hyperbolic flows and the Birkhoff normal form", "authors": [ "M. Rouleux" ], "comment": "34 pages", "categories": [ "math.DS", "math-ph", "math.MP" ], "abstract": "We prove that a Hamiltonian $p\\in C^\\infty(T^*{\\bf R}^n)$ is locally integrable near a non-degenerate critical point $\\rho_0$ of the energy, provided that the fundamental matrix at $\\rho_0$ has no purely imaginary eigenvalues. This is done by using Birkhoff normal forms, which turn out to be convergent in the $C^\\infty$ sense. We also give versions of the Lewis-Sternberg normal form near a hyperbolic fixed point of a canonical transformation. Then we investigate the almost holomorphic case.", "revisions": [ { "version": "v1", "updated": "2002-07-02T19:34:54.000Z" } ], "analyses": { "keywords": [ "birkhoff normal form", "hyperbolic flows", "integrability", "lewis-sternberg normal form", "fundamental matrix" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......7026R" } } }