{ "id": "math/0206281", "version": "v1", "published": "2002-06-26T17:26:13.000Z", "updated": "2002-06-26T17:26:13.000Z", "title": "Large time behavior of the heat kernel", "authors": [ "Yehuda Pinchover" ], "comment": "15 pages", "categories": [ "math.AP", "math.PR" ], "abstract": "In this paper we study the large time behavior of the (minimal) heat kernel $k_P^M(x,y,t)$ of a general time independent parabolic operator $L=u_t+P(x, \\partial_x)$ which is defined on a noncompact manifold $M$. More precisely, we prove that $$\\lim_{t\\to\\infty} e^{\\lambda_0 t}k_P^{M}(x,y,t)$$ always exists. Here $\\lambda_0$ is the generalized principal eigenvalue of the operator $P$ in $M$.", "revisions": [ { "version": "v1", "updated": "2002-06-26T17:26:13.000Z" } ], "analyses": { "subjects": [ "35K10", "60J60", "35B40", "58J35" ], "keywords": [ "large time behavior", "heat kernel", "general time independent parabolic operator", "noncompact manifold", "generalized principal eigenvalue" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......6281P" } } }