{ "id": "math/0206260", "version": "v1", "published": "2002-06-25T09:16:51.000Z", "updated": "2002-06-25T09:16:51.000Z", "title": "The Beckman-Quarles theorem for continuous mappings from R^2 to C^2", "authors": [ "Apoloniusz Tyszka" ], "comment": "12 pages, 4 figures", "categories": [ "math.MG" ], "abstract": "Let \\phi((x_1,x_2),(y_1,y_2))=(x_1-y_1)^2+(x_2-y_2)^2. We say that f:R^2 -> C^2 preserves distance d>=0 if for each x,y \\in R^2 \\phi(x,y)=d^2 implies \\phi(f(x),f(y))=d^2. We prove that if x,y \\in R^2 and |x-y|=(2\\sqrt{2}/3)^k \\cdot (\\sqrt{3})^l (k,l are non-negative integers) then there exists a finite set {x,y} \\subseteq S(x,y) \\subseteq R^2 such that each unit-distance preserving mapping from S(x,y) to C^2 preserves the distance between x and y. It implies that each continuous map from R^2 to C^2 preserving unit distance preserves all distances.", "revisions": [ { "version": "v1", "updated": "2002-06-25T09:16:51.000Z" } ], "analyses": { "subjects": [ "51M05" ], "keywords": [ "beckman-quarles theorem", "continuous mappings", "preserving unit distance preserves", "preserves distance", "finite set" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......6260T" } } }