{ "id": "math/0206217", "version": "v1", "published": "2002-06-20T20:19:09.000Z", "updated": "2002-06-20T20:19:09.000Z", "title": "Units, polyhedra, and a conjecture of Satake", "authors": [ "Paul E. Gunnells", "Jacob Sturm" ], "comment": "plain tex, uses epsf", "categories": [ "math.NT", "math.AG" ], "abstract": "Let $F/\\QQ $ be a totally real number field of degree $n$. We explicitly evaluate a certain sum of rational functions over a infinite fan of $F$-rational polyhedral cones in terms of the norm map $\\Norm \\colon F\\to \\QQ $. This completes Sczech's combinatorial proof of Satake's conjecture connecting the special values of $L$-series associated to cusp singularities with intersection numbers of divisors in their toroidal resolutions.", "revisions": [ { "version": "v1", "updated": "2002-06-20T20:19:09.000Z" } ], "analyses": { "subjects": [ "11F41", "11R42", "14M25" ], "keywords": [ "completes sczechs combinatorial proof", "totally real number field", "rational polyhedral cones", "rational functions", "infinite fan" ], "note": { "typesetting": "Plain TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......6217G" } } }