{ "id": "math/0206195", "version": "v1", "published": "2002-06-19T09:35:55.000Z", "updated": "2002-06-19T09:35:55.000Z", "title": "Infinite dimensional representations of canonical algebras", "authors": [ "Idun Reiten", "Claus Michael Ringel" ], "comment": "29 pages", "categories": [ "math.RT", "math.RA" ], "abstract": "The aim of this paper is to extend the structure theory for infinitely generated modules over tame hereditary algebras to the more general case of modules over concealed canonical algebras. Using tilting, we may assume that we deal with canonical algebras. The investigation is centered around the generic and the Pr\\\"{u}fer modules, and how other modules are determined by these modules.", "revisions": [ { "version": "v1", "updated": "2002-06-19T09:35:55.000Z" } ], "analyses": { "subjects": [ "16D70", "16D90" ], "keywords": [ "infinite dimensional representations", "canonical algebras", "tame hereditary algebras", "structure theory", "general case" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......6195R" } } }