{ "id": "math/0206176", "version": "v2", "published": "2002-06-18T14:30:19.000Z", "updated": "2002-06-21T05:48:33.000Z", "title": "Arithmetic of linear forms involving odd zeta values", "authors": [ "Wadim Zudilin" ], "comment": "42 pages, LaTeX; slight modification of the absract", "journal": "J. Th\\'eorie Nombres Bordeaux 16:1 (2004), 251--291", "categories": [ "math.NT", "math.CA" ], "abstract": "A general hypergeometric construction of linear forms in (odd) zeta values is presented. The construction allows to recover the records of Rhin and Viola for the irrationality measures of $\\zeta(2)$ and $\\zeta(3)$, as well as to explain Rivoal's \"infinitely-many\" result (math.NT/0008051) and to prove that at least one of the four numbers $\\zeta(5)$, $\\zeta(7)$, $\\zeta(9)$, and $\\zeta(11)$ is irrational.", "revisions": [ { "version": "v2", "updated": "2002-06-21T05:48:33.000Z" } ], "analyses": { "subjects": [ "11J72", "11J82", "33C60" ], "keywords": [ "odd zeta values", "linear forms", "arithmetic", "general hypergeometric construction", "irrationality measures" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 42, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......6176Z" } } }