{ "id": "math/0205280", "version": "v1", "published": "2002-05-27T12:02:10.000Z", "updated": "2002-05-27T12:02:10.000Z", "title": "On strict suns in $\\ell^\\infty(3)$", "authors": [ "A. R. Alimov" ], "categories": [ "math.CA", "math.FA" ], "abstract": "A subset M of a normed linear space X is said to be a {\\it strict sun} if, for every point $x\\in X\\setminus M$, the set of its nearest points from~$M$ is non-empty and if $y\\in M$ is a nearest point from M to x, then y is a nearest point from M to all points from the ray $\\{\\lambda x+(1- \\lambda)y | \\lambda>0\\}$. In the paper there obtained a geometrical characterisation of strict suns in $\\ell^\\infty(3)$.", "revisions": [ { "version": "v1", "updated": "2002-05-27T12:02:10.000Z" } ], "analyses": { "subjects": [ "41A65" ], "keywords": [ "strict sun", "nearest point", "normed linear space", "geometrical characterisation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......5280A" } } }