{ "id": "math/0205272", "version": "v1", "published": "2002-05-26T13:03:44.000Z", "updated": "2002-05-26T13:03:44.000Z", "title": "The fundamental group of a Galois cover of CP^1 X T", "authors": [ "Meirav Amram", "David Goldberg", "Mina Teicher", "Uzi Vishne" ], "comment": "Published by Algebraic and Geometric Topology at http://www.maths.warwick.ac.uk/agt/AGTVol2/agt-2-20.abs.html", "journal": "Algebr. Geom. Topol. 2 (2002) 403-432", "categories": [ "math.AG", "math.AT" ], "abstract": "Let T be the complex projective torus, and X the surface CP^1 X T. Let X_Gal be its Galois cover with respect to a generic projection to CP^2. In this paper we compute the fundamental group of X_Gal, using the degeneration and regeneration techniques, the Moishezon-Teicher braid monodromy algorithm and group calculations. We show that pi_1(X_Gal) = Z^10.", "revisions": [ { "version": "v1", "updated": "2002-05-26T13:03:44.000Z" } ], "analyses": { "subjects": [ "14Q10", "14J99", "14J80", "32Q55" ], "keywords": [ "galois cover", "fundamental group", "moishezon-teicher braid monodromy algorithm", "generic projection", "group calculations" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }