{ "id": "math/0205234", "version": "v1", "published": "2002-05-22T18:58:38.000Z", "updated": "2002-05-22T18:58:38.000Z", "title": "The Seiberg-Witten invariants of manifolds with wells of negative curvature", "authors": [ "Daniel Ruberman" ], "categories": [ "math.GT", "math.DG" ], "abstract": "We extend the vanishing theorem for the Seiberg-Witten invariants of a manifold with positive scalar curvature to the case when the curvature is allowed to be negative on a set of small volume. (The precise curvature bounds are described in the paper.) The idea is to combine the method of `semigroup domination' with the Weitzenbock formula. The same curvature hypothesis implies the vanishing of the Seiberg-Witten invariant of any finite covering space. We also show that, in high dimensions, a spin manifold with mostly positive scalar curvature in fact admits a metric of positive scalar curvature.", "revisions": [ { "version": "v1", "updated": "2002-05-22T18:58:38.000Z" } ], "analyses": { "subjects": [ "57R57", "53C21" ], "keywords": [ "seiberg-witten invariant", "positive scalar curvature", "negative curvature", "precise curvature bounds", "curvature hypothesis implies" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......5234R" } } }