{ "id": "math/0205092", "version": "v1", "published": "2002-05-09T04:51:41.000Z", "updated": "2002-05-09T04:51:41.000Z", "title": "Alexander polynomial of sextics", "authors": [ "Mutsuo Oka" ], "comment": "18 pages", "categories": [ "math.AG" ], "abstract": "Alexander polynomials of sextics with only simple singularities or sextics of torus type with arbitrary singularities are computed. We show that for ieeducible sextics,there are four possibilities: $(t^2-t+1)^j, j=0,1,2,3$.", "revisions": [ { "version": "v1", "updated": "2002-05-09T04:51:41.000Z" } ], "analyses": { "subjects": [ "14H30" ], "keywords": [ "alexander polynomial", "simple singularities", "torus type" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......5092O" } } }