{ "id": "math/0205022", "version": "v1", "published": "2002-05-02T11:42:45.000Z", "updated": "2002-05-02T11:42:45.000Z", "title": "A guide to the reduction modulo p of Shimura varieties", "authors": [ "M. Rapoport" ], "comment": "AMS-TeX, 40 pages", "categories": [ "math.AG" ], "abstract": "This is a report on results and methods in the reduction modulo p of Shimura varieties with parahoric level structure. In the first part, the local theory, we explain the concepts of parahoric subgroups, of the mu-admissible and mu-permissible subsets of the Iwahori-Weyl group, of the corresponding union of affine Deligne-Lusztig varieties and of local models. In the second part, the global theory, we use these concepts to formulate conjectures on the points in the reduction modulo p of Shimura varieties with parahoric level structure.", "revisions": [ { "version": "v1", "updated": "2002-05-02T11:42:45.000Z" } ], "analyses": { "subjects": [ "14G35", "11G18" ], "keywords": [ "shimura varieties", "reduction modulo", "parahoric level structure", "affine deligne-lusztig varieties", "global theory" ], "note": { "typesetting": "AMS-TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......5022R" } } }