{ "id": "math/0204171", "version": "v3", "published": "2002-04-13T05:03:39.000Z", "updated": "2002-04-24T20:01:25.000Z", "title": "The Beckman-Quarles theorem for continuous mappings from R^n to C^n", "authors": [ "Apoloniusz Tyszka" ], "comment": "9 pages, added proofs of technical lemmas", "categories": [ "math.MG" ], "abstract": "Let \\phi((x_1,...,x_n),(y_1,...,y_n))=(x_1-y_1)^2+...+(x_n-y_n)^2. We say that f:R^n -> C^n preserves distance d>=0 if for each x,y \\in R^n \\phi(x,y)=d^2 implies \\phi(f(x),f(y))=d^2. We prove that if x,y \\in R^n (n>=3) and |x-y|=(\\sqrt{2+2/n})^k \\cdot (2/n)^l (k,l are non-negative integers) then there exists a finite set {x,y} \\subseteq S(x,y) \\subseteq R^n such that each unit-distance preserving mapping from S(x,y) to C^n preserves the distance between x and y. It implies that each continuous map from R^n to C^n (n>=3) preserving unit distance preserves all distances.", "revisions": [ { "version": "v3", "updated": "2002-04-24T20:01:25.000Z" } ], "analyses": { "subjects": [ "51M05" ], "keywords": [ "beckman-quarles theorem", "continuous mappings", "preserving unit distance preserves", "preserves distance", "finite set" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......4171T" } } }