{ "id": "math/0204060", "version": "v4", "published": "2002-04-04T13:17:11.000Z", "updated": "2003-04-07T09:25:33.000Z", "title": "Differentiable perturbation of unbounded operators", "authors": [ "Andreas Kriegl", "Peter W. Michor" ], "comment": "amstex 9 pages. Some misprints corrected", "journal": "Math. Ann. 327 (2003), 191 - 201", "categories": [ "math.FA", "math.AP", "math.SP" ], "abstract": "If $A(t)$ is a $C^{1,\\al}$-curve of unbounded self-adjoint operators with compact resolvents and common domain of definition, then the eigenvalues can be parameterized $C^1$ in $t$. If $A$ is $C^\\infty$ then the eigenvalues can be parameterized twice differentiable.", "revisions": [ { "version": "v4", "updated": "2003-04-07T09:25:33.000Z" } ], "analyses": { "subjects": [ "47A55", "47A75" ], "keywords": [ "unbounded operators", "differentiable perturbation", "eigenvalues", "common domain", "unbounded self-adjoint operators" ], "tags": [ "journal article" ], "note": { "typesetting": "AMS-TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......4060K" } } }