{ "id": "math/0204047", "version": "v2", "published": "2002-04-03T12:09:20.000Z", "updated": "2002-11-27T04:49:15.000Z", "title": "Representability of $GL_E$", "authors": [ "Nitin Nitsure" ], "comment": "3 pages, LaTeX", "categories": [ "math.AG" ], "abstract": "Let $S$ be a noetherian scheme, and let $E$ be a coherent sheaf on it. We define a group-valued contravariant functor $GL_E$ on $S$-schemes by associating to any $S$-scheme $T$ the group $GL_E(T)$ of all linear automorphisms of the pullback of $E$ to $T$. This functor is clearly a sheaf in the fpqc topology. We prove that $GL_E$ is representable by a group-scheme over $S$ if and only if the sheaf $E$ is locally free.", "revisions": [ { "version": "v2", "updated": "2002-11-27T04:49:15.000Z" } ], "analyses": { "subjects": [ "14L15" ], "keywords": [ "representability", "fpqc topology", "coherent sheaf", "noetherian scheme", "linear automorphisms" ], "note": { "typesetting": "LaTeX", "pages": 3, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......4047N" } } }