{ "id": "math/0204045", "version": "v2", "published": "2002-04-03T11:11:20.000Z", "updated": "2002-04-18T07:49:12.000Z", "title": "A better upper bound on the number of triangulations of a planar point set", "authors": [ "Francisco Santos", "Raimund Seidel" ], "comment": "6 pages, 1 figure", "journal": "J. Combin. Theory Ser. A, 102:1 (2003), 186-193", "doi": "10.1016/S0097-3165(03)00002-5", "categories": [ "math.CO" ], "abstract": "We show that a point set of cardinality $n$ in the plane cannot be the vertex set of more than $59^n O(n^{-6})$ straight-edge triangulations of its convex hull. This improves the previous upper bound of $276.75^n$.", "revisions": [ { "version": "v2", "updated": "2002-04-18T07:49:12.000Z" } ], "analyses": { "subjects": [ "05C10" ], "keywords": [ "planar point set", "better upper bound", "vertex set", "straight-edge triangulations", "convex hull" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......4045S" } } }