{ "id": "math/0204002", "version": "v1", "published": "2002-03-29T22:03:50.000Z", "updated": "2002-03-29T22:03:50.000Z", "title": "Bertini theorems over finite fields", "authors": [ "Bjorn Poonen" ], "comment": "22 pages, Latex 2e", "categories": [ "math.AG", "math.NT" ], "abstract": "Let X be a smooth quasiprojective subscheme of P^n of dimension m >= 0 over F_q. Then there exist homogeneous polynomials f over F_q for which the intersection of X and the hypersurface f=0 is smooth. In fact, the set of such f has a positive density, equal to zeta_X(m+1)^{-1}, where zeta_X(s)=Z_X(q^{-s}) is the zeta function of X. An analogue for regular quasiprojective schemes over Z is proved, assuming the abc conjecture and another conjecture.", "revisions": [ { "version": "v1", "updated": "2002-03-29T22:03:50.000Z" } ], "analyses": { "subjects": [ "14J70", "11M38", "11M41", "14G40", "14N05" ], "keywords": [ "finite fields", "bertini theorems", "smooth quasiprojective subscheme", "abc conjecture", "regular quasiprojective schemes" ], "note": { "typesetting": "LaTeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......4002P" } } }