{ "id": "math/0203233", "version": "v1", "published": "2002-03-22T14:17:04.000Z", "updated": "2002-03-22T14:17:04.000Z", "title": "A Characterization of Similarity Maps Between Euclidean Spaces Related to the Beckman--Quarles Theorem", "authors": [ "Jobst Heitzig" ], "comment": "5 pages", "categories": [ "math.MG", "math.GN" ], "abstract": "It is shown that each continuous transformation $h$ from Euclidean $m$-space ($m>1$) into Euclidean $n$-space that preserves the equality of distances (that is, fulfils the implication $|x-y|=|z-w|\\Rightarrow|h(x)-h(y)|=|h(z)-h(w)|$) is a similarity map. The case of equal dimensions already follows from the Beckman--Quarles Theorem.", "revisions": [ { "version": "v1", "updated": "2002-03-22T14:17:04.000Z" } ], "analyses": { "subjects": [ "51F20", "51F25", "15A04" ], "keywords": [ "euclidean spaces", "beckman-quarles theorem", "similarity map", "characterization", "equal dimensions" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......3233H" } } }