{ "id": "math/0202252", "version": "v5", "published": "2002-02-24T18:49:56.000Z", "updated": "2003-09-30T16:13:06.000Z", "title": "Lower bounds for Kazhdan-Lusztig polynomials from patterns", "authors": [ "Sara Billey", "Tom Braden" ], "comment": "14 pages; updated references. Final version; will appear in Transformation Groups vol.8, no. 4", "categories": [ "math.RT", "math.AG", "math.CO" ], "abstract": "We give a lower bound for the value at q=1 of a Kazhdan-Lustig polynomial in a Weyl group W in terms of \"patterns''. This is expressed by a \"pattern map\" from W to W' for any parabloic subgroup W'. This notion generalizes the concept of patterns and pattern avoidance for permutations to all Weyl groups. The main tool of the proof is a \"hyperbolic localization\" on intersection cohomology; see the related paper http://front.math.ucdavis.edu/math.AG/0202251", "revisions": [ { "version": "v5", "updated": "2003-09-30T16:13:06.000Z" } ], "analyses": { "subjects": [ "14M15", "20F55" ], "keywords": [ "lower bound", "kazhdan-lusztig polynomials", "weyl group", "notion generalizes", "intersection cohomology" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......2252B" } } }