{ "id": "math/0202215", "version": "v1", "published": "2002-02-21T13:19:19.000Z", "updated": "2002-02-21T13:19:19.000Z", "title": "Hausdorff dimension of the set of extreme points of a self-similar set", "authors": [ "Andrew Tetenov", "Ivan Davydkin" ], "comment": "10 pages, 3 figures, Latex2e", "categories": [ "math.MG", "math.DS" ], "abstract": "If the system S of contracting similitudes on $ R^2$ satisfies open convex set condition, then the set F of extreme points of the convex hull $\\tilde{K}$ of it's invariant self-similar set K has Hausdorff dimension 0 . If, additionally, all the rotation angles of the similitudes are commensurable with $\\pi$, then the set F is finite and the convex hull $\\tilde{K}$ is a convex polygon.", "revisions": [ { "version": "v1", "updated": "2002-02-21T13:19:19.000Z" } ], "analyses": { "subjects": [ "28A80" ], "keywords": [ "hausdorff dimension", "extreme points", "satisfies open convex set condition", "convex hull", "invariant self-similar set" ], "note": { "typesetting": "LaTeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......2215T" } } }