{ "id": "math/0202114", "version": "v4", "published": "2002-02-12T20:39:07.000Z", "updated": "2002-11-21T19:57:37.000Z", "title": "On Finite-Dimensional Maps II", "authors": [ "H. Murat Tuncali", "Vesko Valov" ], "comment": "8 pages", "categories": [ "math.GN" ], "abstract": "Let $f\\colon X\\to Y$ be a perfect $n$-dimensional surjection of paracompact spaces with $Y$ being a $C$-space. We prove that, for any $m\\geq n+1$, almost all (in the sense of Baire category) maps $g$ from $X$ into the $m$-dimensional cube have the following property: $g(f^{-1}(y))$ is at most $n$-dimensional for every $y\\in Y$.", "revisions": [ { "version": "v4", "updated": "2002-11-21T19:57:37.000Z" } ], "analyses": { "subjects": [ "54F45", "55M10" ], "keywords": [ "finite-dimensional maps", "paracompact spaces", "dimensional surjection", "baire category" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......2114M" } } }