{ "id": "math/0201311", "version": "v1", "published": "2002-01-31T06:13:50.000Z", "updated": "2002-01-31T06:13:50.000Z", "title": "On the nonexistence of certain curves of genus two", "authors": [ "Everett W. Howe" ], "comment": "LaTeX, 13 pages", "journal": "Compos. Math. 140 (2004) 581--592", "doi": "10.1112/S0010437X03000757", "categories": [ "math.NT", "math.AG" ], "abstract": "We prove that if q is a power of an odd prime then there is no genus-2 curve over F_q whose Jacobian has characteristic polynomial of Frobenius equal to x^4 + (2-2q)x^2 + q^2. Our proof uses the Brauer relations in a biquadratic extension of Q to show that every principally polarized abelian surface over F_q with the given characteristic polynomial splits over F_{q^2} as a product of polarized elliptic curves.", "revisions": [ { "version": "v1", "updated": "2002-01-31T06:13:50.000Z" } ], "analyses": { "subjects": [ "11G20", "11G10", "11R65", "14G15", "14H25" ], "keywords": [ "nonexistence", "characteristic polynomial splits", "polarized elliptic curves", "frobenius equal", "principally polarized abelian surface" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......1311H" } } }