{ "id": "math/0201073", "version": "v6", "published": "2002-01-09T18:11:33.000Z", "updated": "2020-02-11T20:29:16.000Z", "title": "Perverse sheaves on affine flags and Langlands dual group", "authors": [ "Sergey Arkhipov", "Roman Bezrukavnikov" ], "comment": "32 pages; some corrections, epigraph added. See arXiv:1807.07614 for corrected proof of Lemma 5", "categories": [ "math.RT", "math.AG" ], "abstract": "The geometric Satake isomorphism is an equivalence between the categories of spherical perverse sheaves on affine Grassmanian and the category of representations of the Langlands dual group. We provide a similar description for derived categories of l-adic sheaves on an affine flag variety which are geometric counterparts of a maximal commutative subalgebra in the Iwahori Hecke algebra; of the anti-spherical module over this algebra; and of the space of Iwahori-invariant Whitakker functions.", "revisions": [ { "version": "v5", "updated": "2007-09-06T00:18:47.000Z", "comment": "32 pages; some corrections, epigraph added", "journal": null, "doi": null }, { "version": "v6", "updated": "2020-02-11T20:29:16.000Z" } ], "analyses": { "keywords": [ "langlands dual group", "iwahori-invariant whitakker functions", "affine flag variety", "iwahori hecke algebra", "geometric satake isomorphism" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......1073A" } } }