{ "id": "math/0201048", "version": "v1", "published": "2002-01-07T22:16:35.000Z", "updated": "2002-01-07T22:16:35.000Z", "title": "Entropy, dimension and the Elton-Pajor Theorem", "authors": [ "S. Mendelson", "R. Vershynin" ], "categories": [ "math.FA", "math.CO" ], "abstract": "The Vapnik-Chervonenkis dimension of a set K in R^n is the maximal dimension of the coordinate cube of a given size, which can be found in coordinate projections of K. We show that the VC dimension of a convex body governs its entropy. This has a number of consequences, including the optimal Elton's theorem and a uniform central limit theorem in the real valued case.", "revisions": [ { "version": "v1", "updated": "2002-01-07T22:16:35.000Z" } ], "analyses": { "keywords": [ "elton-pajor theorem", "uniform central limit theorem", "convex body governs", "optimal eltons theorem", "coordinate cube" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002math......1048M" } } }