{ "id": "math/0112257", "version": "v1", "published": "2001-12-22T21:20:57.000Z", "updated": "2001-12-22T21:20:57.000Z", "title": "The computational complexity of the local postage stamp problem", "authors": [ "Jeffrey Shallit" ], "categories": [ "math.NT", "cs.CC", "math.CO" ], "abstract": "The well-studied local postage stamp problem (LPSP) is the following: given a positive integer k, a set of postive integers 1 = a1 < a2 < ... < ak and an integer h >= 1, what is the smallest positive integer which cannot be represented as a linear combination x1 a1 + ... + xk ak where x1 + ... + xk <= h and each xi is a non-negative integer? In this note we prove that LPSP is NP-hard under Turing reductions, but can be solved in polynomial time if k is fixed.", "revisions": [ { "version": "v1", "updated": "2001-12-22T21:20:57.000Z" } ], "analyses": { "subjects": [ "11B13", "11D85", "68Q25", "11Y16" ], "keywords": [ "computational complexity", "linear combination x1 a1", "well-studied local postage stamp problem", "smallest positive integer", "polynomial time" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math.....12257S" } } }