{ "id": "math/0112008", "version": "v1", "published": "2001-12-01T16:01:58.000Z", "updated": "2001-12-01T16:01:58.000Z", "title": "The coarea formula for Sobolev mappings", "authors": [ "Jan Maly", "David Swanson", "William P. Ziemer" ], "comment": "Submitted for publication, 16 pages", "categories": [ "math.CA" ], "abstract": "We extend Federer's coarea formula to mappings $f$ belonging to the Sobolev class $W^{1,p}(R^n;R^m)$, $1 \\le m < n$, $p>m$, and more generally, to mappings with gradient in the Lorentz space $L^{m,1}(R^n)$. This is accomplished by showing that the graph of $f$ in $R^{n+m}$ is a Hausdorff $n$-rectifiable set.", "revisions": [ { "version": "v1", "updated": "2001-12-01T16:01:58.000Z" } ], "analyses": { "subjects": [ "46E35", "46E30" ], "keywords": [ "sobolev mappings", "extend federers coarea formula", "lorentz space", "sobolev class", "rectifiable set" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math.....12008M" } } }