{ "id": "math/0111162", "version": "v3", "published": "2001-11-14T10:49:54.000Z", "updated": "2002-12-04T10:00:56.000Z", "title": "Unimodular covers of multiples of polytopes", "authors": [ "Winfried Bruns", "Joseph Gubeladze" ], "comment": "13 pages, uses pstricks and mathptm The revised version has been thoroughly rewritten", "categories": [ "math.CO" ], "abstract": "Let P be a d-dimensional lattice polytope. We show that there exists a natural number c_d, only depending on d, such that the multiples cP have a unimodular cover for every natural number c >= c_d. Actually, a subexponential upper bound for c_d is provided, together with an analogous result for unimodular covers of rational cones.", "revisions": [ { "version": "v3", "updated": "2002-12-04T10:00:56.000Z" } ], "analyses": { "subjects": [ "52B20", "52C07" ], "keywords": [ "unimodular cover", "natural number", "d-dimensional lattice polytope", "subexponential upper bound", "multiples cp" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math.....11162B" } } }