{ "id": "math/0111073", "version": "v1", "published": "2001-11-07T09:48:42.000Z", "updated": "2001-11-07T09:48:42.000Z", "title": "Theoreme de Van Kampen pour les champs algebriques", "authors": [ "V. Zoonekynd" ], "comment": "latex2e with xypic, 42 pages, 1 figure, in French", "categories": [ "math.AG", "math.CT" ], "abstract": "We define a category whose objects are finite etale coverings of an algebraic stack and prove that it is a Galois category and that it allows one to compute the fundamental group of the stack. We then prove a Van Kampen theorem for algebraic stacks whose simplest form reads: Let U and V be open substacks of an algebraic stack X with X = U \\union V, let P be a set of base points, at least one in each connected component of X, U, V and U \\inter V, then pi_1(X,P) is the amalgamated sum of pi_1(U,P) and pi_1(V,P) over pi_1(U \\inter V, P).", "revisions": [ { "version": "v1", "updated": "2001-11-07T09:48:42.000Z" } ], "analyses": { "subjects": [ "14F35", "14A20", "18B25", "20L05", "18D05" ], "keywords": [ "van kampen pour", "champs algebriques", "algebraic stack", "simplest form reads", "finite etale coverings" ], "note": { "typesetting": "LaTeX", "pages": 42, "language": "fr", "license": "arXiv", "status": "editable", "adsabs": "2001math.....11073Z" } } }