{ "id": "math/0110102", "version": "v1", "published": "2001-10-09T20:52:34.000Z", "updated": "2001-10-09T20:52:34.000Z", "title": "ACM bundles on a general quintic threefold", "authors": [ "L. Chiantini", "C. Madonna" ], "journal": "Matematiche (Catania) 55 (2000), no. 2, 239-258", "categories": [ "math.AG" ], "abstract": "We give a partial positive answer to a conjecture of Tyurin (\\cite {Tyu}). Indeed we prove that on a general quintic hypersurface of $\\Pj^4$ every arithmetically Cohen--Macaulay rank 2 vector bundle is infinitesimally rigid.", "revisions": [ { "version": "v1", "updated": "2001-10-09T20:52:34.000Z" } ], "analyses": { "subjects": [ "14F05" ], "keywords": [ "general quintic threefold", "acm bundles", "general quintic hypersurface", "arithmetically cohen-macaulay rank", "vector bundle" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math.....10102C" } } }