{ "id": "math/0110012", "version": "v3", "published": "2001-10-01T12:03:05.000Z", "updated": "2003-09-16T09:46:58.000Z", "title": "Inequalities of Noether type for 3-folds of general type", "authors": [ "Meng Chen" ], "comment": "25 pages, the final version, to appear in \"Journal of the Mathematical Society of Japan\"", "categories": [ "math.AG" ], "abstract": "If $X$ is a smooth complex projective 3-fold with ample canonical divisor $K$, then the inequality $K^3\\ge {2/3}(2p_g-7)$ holds, where $p_g$ denotes the geometric genus. This inequality is nearly sharp. We also give similar, but more complicated, inequalities for general minimal 3-folds of general type. (A noether type of inequality lies, by all means, on the other side of the Miyaoka-Yau inequality from the geographical point of view.)", "revisions": [ { "version": "v3", "updated": "2003-09-16T09:46:58.000Z" } ], "analyses": { "subjects": [ "14E05" ], "keywords": [ "general type", "noether type", "ample canonical divisor", "geometric genus", "general minimal" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math.....10012C" } } }