{ "id": "math/0109171", "version": "v1", "published": "2001-09-23T13:06:38.000Z", "updated": "2001-09-23T13:06:38.000Z", "title": "Multiplicity of closed characteristics on symmetric convex hypersurfaces in $\\R^{2n}$", "authors": [ "Chun-gen Liu", "Yiming Long", "Chaofeng Zhu" ], "comment": "16 pages", "journal": "Mathematische Annalen, June 2002, Volume 323, Issue 2, pp 201-215", "doi": "10.1007/s002089100257", "categories": [ "math.DS", "math.SG" ], "abstract": "Let $\\Sigma$ be a compact $C^2$ hypersurface in $\\R^{2n}$ bounding a convex set with non-empty interior. In this paper it is proved that there always exist at least $n$ geometrically distinct closed characteristics on $\\Sigma$ if $\\Sigma$ is symmetric with respect to the origin.", "revisions": [ { "version": "v1", "updated": "2001-09-23T13:06:38.000Z" } ], "analyses": { "subjects": [ "58F05" ], "keywords": [ "symmetric convex hypersurfaces", "multiplicity", "convex set", "geometrically distinct closed characteristics", "non-empty interior" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }