{ "id": "math/0109045", "version": "v1", "published": "2001-09-06T19:44:52.000Z", "updated": "2001-09-06T19:44:52.000Z", "title": "Curvature and rank of Teichmüller space", "authors": [ "Jeffrey Brock", "Benson Farb" ], "comment": "23 pages, 1 figure", "categories": [ "math.GT", "math.DG", "math.GR" ], "abstract": "Let S be a surface with genus g and n boundary components and let d(S) = 3g-3+n denote the number of curves in any pants decomposition of S. We employ metric properties of the graph of pants decompositions CP(S) prove that the Weil-Petersson metric on Teichmuller space Teich(S) is Gromov-hyperbolic if and only if d(S) <= 2. When d(S) >= 3 the Weil-Petersson metric has higher rank in the sense of Gromov (it admits a quasi-isometric embedding of R^k, k >= 2); when d(S) <= 2 we combine the hyperbolicity of the complex of curves and the relative hyperbolicity of CP(S) prove Gromov-hyperbolicity. We prove moreover that Teich(S) admits no geodesically complete Gromov-hyperbolic metric of finite covolume when d(S) >= 3, and that no complete Riemannian metric of pinched negative curvature exists on Moduli space M(S) when d(S) >= 2.", "revisions": [ { "version": "v1", "updated": "2001-09-06T19:44:52.000Z" } ], "analyses": { "keywords": [ "teichmüller space", "weil-petersson metric", "employ metric properties", "teichmuller space teich", "complete riemannian metric" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math......9045B" } } }