{ "id": "math/0108115", "version": "v1", "published": "2001-08-16T18:43:00.000Z", "updated": "2001-08-16T18:43:00.000Z", "title": "On the minimal number of critical points of functions on h-cobordisms", "authors": [ "P. E. Pushkar", "Yu. B. Rudyak" ], "comment": "7 pages, Latex", "categories": [ "math.GT", "math.KT" ], "abstract": "Let (W,M,M'), dim W > 5, be a non-trivial h-cobordism (i.e., the Whitehead torsion of (W,V) is non-zero). We prove that every smooth function f: W --> [0,1], f(M)=0, f(M')=1 has at least 2 critical points. This estimate is sharp: W possesses a function as above with precisely two critical points.", "revisions": [ { "version": "v1", "updated": "2001-08-16T18:43:00.000Z" } ], "analyses": { "subjects": [ "57R80", "19J10", "57R10" ], "keywords": [ "critical points", "minimal number", "whitehead torsion", "smooth function" ], "note": { "typesetting": "LaTeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math......8115P" } } }