{ "id": "math/0107162", "version": "v2", "published": "2001-07-23T14:37:07.000Z", "updated": "2003-08-13T20:44:02.000Z", "title": "Arithmetic properties of the adjacency matrix of quadriculated disks", "authors": [ "Nicolau C. Saldanha", "Carlos Tomei" ], "comment": "12 pages, 9 figures", "categories": [ "math.CO", "math.RA" ], "abstract": "Let $\\Delta$ be a bicolored quadriculated disk with black-to-white matrix $B_\\Delta$. We show how to factor $B_\\Delta = L\\tilde DU$, where $L$ and $U$ are lower and upper triangular matrices, $\\tilde D$ is obtained from a larger identity matrix by removing rows and columns and all entries of $L$, $\\tilde D$ and $U$ are equal to 0, 1 or -1.", "revisions": [ { "version": "v2", "updated": "2003-08-13T20:44:02.000Z" } ], "analyses": { "subjects": [ "05B45", "05A15", "05C50", "05E05" ], "keywords": [ "arithmetic properties", "adjacency matrix", "larger identity matrix", "upper triangular matrices", "black-to-white matrix" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math......7162S" } } }