{ "id": "math/0107138", "version": "v1", "published": "2001-07-19T15:28:01.000Z", "updated": "2001-07-19T15:28:01.000Z", "title": "Invariant d'entrelacs associé à la représentation des spineurs de so(7)", "authors": [ "Bertrand Patureau-Mirand" ], "comment": "15 pages in french", "categories": [ "math.GT", "math.QA" ], "abstract": "Pulling back the weight system associated with the spinor representation of the Lie algebra so(7) by the universal Vassiliev-Kontsevich invariant yields a numerical link invariant with values in formal power series. Computing some skein relations satisfied by this invariant, I derive a recursive algorithm for its evaluation. The values of this invariant belong to the ring Z[W,W^{-1}] of Laurent polynomials in one variable.", "revisions": [ { "version": "v1", "updated": "2001-07-19T15:28:01.000Z" } ], "analyses": { "subjects": [ "57M27", "20G42", "20G05" ], "keywords": [ "invariant dentrelacs", "représentation", "universal vassiliev-kontsevich invariant yields", "formal power series", "lie algebra" ], "note": { "typesetting": "TeX", "pages": 15, "language": "fr", "license": "arXiv", "status": "editable", "adsabs": "2001math......7138P" } } }