{ "id": "math/0107082", "version": "v1", "published": "2001-07-11T14:49:47.000Z", "updated": "2001-07-11T14:49:47.000Z", "title": "On some integrals involving the Hurwitz zeta function: part 2", "authors": [ "Olivier R. Espinosa", "Victor H. Moll" ], "comment": "17 pages, AMS-LaTeX", "journal": "THE RAMANUJAN JOURNAL, 6, 449-468, 2002", "categories": [ "math.CA", "math-ph", "math.MP" ], "abstract": "We establish a series of indefinite integral formulae involving the Hurwitz zeta function and other elementary and special functions related to it, such as the Bernoulli polynomials, ln sin (\\pi q), ln Gamma(q) and the polygamma functions. Many of the results are most conveniently formulated in terms of a family of functions A_k(q):=k zeta'(1-k,q), where k is a natural number, and a family of polygamma functions of negative order, whose properties we study in some detail.", "revisions": [ { "version": "v1", "updated": "2001-07-11T14:49:47.000Z" } ], "analyses": { "keywords": [ "hurwitz zeta function", "polygamma functions", "indefinite integral formulae", "special functions", "bernoulli polynomials" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math......7082E" } } }