{ "id": "math/0107005", "version": "v1", "published": "2001-07-01T23:37:19.000Z", "updated": "2001-07-01T23:37:19.000Z", "title": "On the Jacobi Group and the Mapping Class Group of $S^3\\times S^3$", "authors": [ "Nikolai A. Krylov" ], "comment": "23 pages", "categories": [ "math.AT" ], "abstract": "The paper containes a proof that the mapping class group of the manifold $S^3\\times S^3$ is isomorphic to a central extension of the (full) Jacobi group $\\Gamma^J$ by the group of 7-dimensional homotopy spheres. Using a presentation of the group $\\Gamma^J$ and the $\\mu$-invariant of the homotopy spheres, we give a presentation of the mapping class group of $S^3\\times S^3$ with generators and defining relations. We also compute cohomology of the group $\\Gamma^J$ and determine a 2-cocycle that corresponds to the mapping class group of $S^3\\times S^3$.", "revisions": [ { "version": "v1", "updated": "2001-07-01T23:37:19.000Z" } ], "analyses": { "subjects": [ "57R50", "57R52", "20J06" ], "keywords": [ "mapping class group", "jacobi group", "homotopy spheres", "central extension", "presentation" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math......7005K" } } }