{ "id": "math/0106231", "version": "v1", "published": "2001-06-27T12:40:05.000Z", "updated": "2001-06-27T12:40:05.000Z", "title": "Some Liouville Theorems for the p-Laplacian", "authors": [ "I. Birindelli", "F. Demengel" ], "comment": "19 pages", "categories": [ "math.AP" ], "abstract": "We present several Liouville type results for the $p$-Laplacian in $\\R^N$. Suppose that $h$ is a nonnegative regular function such that $$ h(x) = a|x|^\\gamma\\ {\\rm for}\\ |x|\\ {\\rm large},\\ a>0\\ {\\rm and}\\ \\gamma> -p. $$ We obtain the following non -existence result: 1) Suppose that $N>p>1$, and $u\\in W^{1,p}_{loc} (\\R^N)\\cap {\\cal C} (\\R^N)$ is a nonnegative weak solution of $ - {\\rm div} (|\\nabla u|^{p-2 }\\nabla u) \\geq h(x) u^q \\;\\;\\mbox{in }\\; \\R^N $ . Suppose that $p-1< q\\leq {(N+\\gamma)(p-1)\\over N-p}$ then $u\\equiv 0$. 2) Let $N\\leq p$. If $u\\in W^{1,p}_{loc} (\\R^N)\\cap {\\cal C} (\\R^N)$ is a weak solution bounded below of $-{\\rm div} (|\\nabla u|^{p-2 }\\nabla u)\\geq 0$ in $\\R^N$ then $u$ is constant. 3) Let $N>p$ if $u$ is bounded from below and $-{\\rm div} (|\\nabla u|^{p-2 }\\nabla u)=0$ in $\\R^N$ then $u$ is constant. 4)If $ -\\Delta_p u+h(x) u^q\\leq 0, $. If $q> p-1$, then $u\\equiv 0$.", "revisions": [ { "version": "v1", "updated": "2001-06-27T12:40:05.000Z" } ], "analyses": { "subjects": [ "35J60", "35J70", "35B50" ], "keywords": [ "liouville theorems", "p-laplacian", "liouville type results", "nonnegative regular function", "nonnegative weak solution" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math......6231B" } } }