{ "id": "math/0106217", "version": "v1", "published": "2001-06-26T10:37:31.000Z", "updated": "2001-06-26T10:37:31.000Z", "title": "Coding rotations on intervals", "authors": [ "Jean Berstel", "Laurent Vuillon" ], "comment": "LIAFA report", "categories": [ "math.CO", "math.DS" ], "abstract": "We show that the coding of rotation by $\\alpha$ on $m$ intervals with rationally independent lengths can be recoded over $m$ Sturmian words of angle $\\alpha.$ More precisely, for a given $m$ an universal automaton is constructed such that the edge indexed by the vector of values of the $i$th letter on each Sturmian word gives the value of the $i$th letter of the coding of rotation.", "revisions": [ { "version": "v1", "updated": "2001-06-26T10:37:31.000Z" } ], "analyses": { "subjects": [ "68R15" ], "keywords": [ "coding rotations", "sturmian word", "th letter", "rationally independent lengths", "universal automaton" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math......6217B" } } }