{ "id": "math/0106101", "version": "v1", "published": "2001-06-13T08:08:18.000Z", "updated": "2001-06-13T08:08:18.000Z", "title": "Harmonic morphisms with one-dimensional fibres on Einstein manifolds", "authors": [ "Radu Pantilie", "John C. Wood" ], "comment": "Latex 2e, 21 pages", "categories": [ "math.DG" ], "abstract": "We prove that, from an Einstein manifold of dimension greater than or equal to five, there are just two types of harmonic morphism with one-dimensional fibres. This generalizes a result of R.L. Bryant who obtained the same conclusion under the assumption that the domain has constant curvature.", "revisions": [ { "version": "v1", "updated": "2001-06-13T08:08:18.000Z" } ], "analyses": { "subjects": [ "58E20", "53C43" ], "keywords": [ "einstein manifold", "one-dimensional fibres", "harmonic morphism", "dimension greater", "constant curvature" ], "note": { "typesetting": "LaTeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math......6101P" } } }