{ "id": "math/0106079", "version": "v2", "published": "2001-06-11T12:31:58.000Z", "updated": "2003-01-14T00:54:15.000Z", "title": "Combinatorics and invariant differential operators on multiplicity free spaces", "authors": [ "Friedrich Knop" ], "comment": "36 pages, some typos corrected", "journal": "J. Algebra 260 (2003), 194-229", "doi": "10.1016/S0021-8693(02)00633-6", "categories": [ "math.RT", "math.CO" ], "abstract": "We study the generalization of shifted Jack polynomials to arbitrary multiplicity free spaces. In a previous paper (math.RT/0006004) we showed that these polynomials are eigenfunctions for commuting difference operators. Our central result now is the \"transposition formula\", a generalization of Okounkov's binomial theorem (q-alg/9608021) for shifted Jack polynomials. From this formula, we derive an interpolation formula, an evaluation formula, a scalar product, a binomial theorem, and properties of the algebra generated by the multiplication and difference operators.", "revisions": [ { "version": "v2", "updated": "2003-01-14T00:54:15.000Z" } ], "analyses": { "subjects": [ "05E35", "33C52", "39A70" ], "keywords": [ "invariant differential operators", "shifted jack polynomials", "combinatorics", "difference operators", "arbitrary multiplicity free spaces" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math......6079K" } } }