{ "id": "math/0106066", "version": "v1", "published": "2001-06-10T07:36:20.000Z", "updated": "2001-06-10T07:36:20.000Z", "title": "THe largest eigenvalue of sparse random graphs", "authors": [ "Michael Krivelevich", "Benny Sudakov" ], "categories": [ "math.CO", "math.PR" ], "abstract": "We prove that for all values of the edge probability p(n) the largest eigenvalue of a random graph G(n,p) satisfies almost surely: \\lambda_1(G)=(1+o(1))max{\\sqrt{\\Delta},np}, where \\Delta is a maximal degree of G, and the o(1) term tends to zero as max{\\sqrt{\\Delta},np} tends to infinity.", "revisions": [ { "version": "v1", "updated": "2001-06-10T07:36:20.000Z" } ], "analyses": { "subjects": [ "05C80", "15A52" ], "keywords": [ "sparse random graphs", "largest eigenvalue", "maximal degree", "edge probability", "term tends" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math......6066K" } } }