{ "id": "math/0105102", "version": "v1", "published": "2001-05-11T19:33:28.000Z", "updated": "2001-05-11T19:33:28.000Z", "title": "A Hirzebruch proportionality principle in Arakelov geometry", "authors": [ "Kai Koehler" ], "comment": "15 pages", "categories": [ "math.AG", "math.DG" ], "abstract": "We show that a conjectural extension of a fixed point formula in Arakelov geometry implies results about a tautological subring in the arithmetic Chow ring of bases of abelian schemes. Among the results are an Arakelov version of the Hirzebruch proportionality principle and a formula for a critical power of $\\hat c_1$ of the Hodge bundle.", "revisions": [ { "version": "v1", "updated": "2001-05-11T19:33:28.000Z" } ], "analyses": { "subjects": [ "14G40", "58J52", "20G05", "20G10", "14M17" ], "keywords": [ "hirzebruch proportionality principle", "arakelov geometry implies results", "abelian schemes", "fixed point formula", "arithmetic chow" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math......5102K" } } }