{ "id": "math/0105100", "version": "v1", "published": "2001-05-11T19:20:16.000Z", "updated": "2001-05-11T19:20:16.000Z", "title": "A fixed point formula of Lefschetz type in Arakelov geometry III: representations of Chevalley schemes and heights of flag varieties", "authors": [ "Christian Kaiser", "Kai Koehler" ], "comment": "35 pages", "doi": "10.1007/s002220100187", "categories": [ "math.AG", "math.DG" ], "abstract": "We give a new proof of the Jantzen sum formula for integral representations of Chevalley schemes over Spec Z. This is done by applying the fixed point formula of Lefschetz type in Arakelov geometry to generalized flag varieties. Our proof involves the computation of the equivariant Ray-Singer torsion for all equivariant bundles over complex homogeneous spaces. Furthermore, we find several explicit formulae for the global height of any generalized flag variety.", "revisions": [ { "version": "v1", "updated": "2001-05-11T19:20:16.000Z" } ], "analyses": { "subjects": [ "14G40", "58J52", "20G05", "20G10", "14M17" ], "keywords": [ "fixed point formula", "chevalley schemes", "lefschetz type", "arakelov geometry", "representations" ], "tags": [ "journal article" ], "publication": { "journal": "Inventiones Mathematicae", "year": 2002, "month": "Mar", "volume": 147, "number": 3, "pages": 633 }, "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2002InMat.147..633K" } } }