{ "id": "math/0105098", "version": "v1", "published": "2001-05-11T19:03:31.000Z", "updated": "2001-05-11T19:03:31.000Z", "title": "A fixed point formula of Lefschetz type in Arakelov geometry II: a residue formula", "authors": [ "Kai Koehler", "Damian Roessler" ], "comment": "20 pages", "doi": "10.1007/s002220100151", "categories": [ "math.AG", "math.DG" ], "abstract": "This is the second of a series of papers dealing with an analog in Arakelov geometry of the holomorphic Lefschetz fixed point formula. We use the main result of the first paper to prove a residue formula \"`a la Bott\" for arithmetic characteristic classes living on arithmetic varieties acted upon by a diagonalisable torus; recent results of Bismut-Goette on the equivariant (Ray-Singer) analytic torsion play a key role in the proof.", "revisions": [ { "version": "v1", "updated": "2001-05-11T19:03:31.000Z" } ], "analyses": { "subjects": [ "14G40", "58J52", "14C40", "14L30", "58J20", "14K15" ], "keywords": [ "arakelov geometry", "residue formula", "lefschetz type", "holomorphic lefschetz fixed point formula", "arithmetic characteristic classes" ], "tags": [ "journal article" ], "publication": { "journal": "Inventiones Mathematicae", "year": 2001, "month": "Aug", "volume": 145, "number": 2, "pages": 333 }, "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001InMat.145..333K" } } }