{ "id": "math/0105063", "version": "v3", "published": "2001-05-09T05:33:32.000Z", "updated": "2002-03-18T22:06:57.000Z", "title": "Gauss-Manin Connections for Arrangements", "authors": [ "Daniel C. Cohen", "Peter Orlik" ], "comment": "LaTeX, 15 pages. v2: minor changes. v3: 16 pages, to appear in Compositio Math", "journal": "Compositio Math. 136 (2003), 299-316", "categories": [ "math.AG", "math.CO" ], "abstract": "We construct a formal connection on the Aomoto complex of an arrangement of hyperplanes, and use it to study the Gauss-Manin connection for the moduli space of the arrangement in the cohomology of a complex rank one local system. We prove that the eigenvalues of the Gauss-Manin connection are integral linear combinations of the weights which define the local system.", "revisions": [ { "version": "v3", "updated": "2002-03-18T22:06:57.000Z" } ], "analyses": { "subjects": [ "32S22", "14D05", "52C35", "55N25" ], "keywords": [ "gauss-manin connection", "arrangement", "local system", "integral linear combinations", "aomoto complex" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math......5063C" } } }