{ "id": "math/0104279", "version": "v5", "published": "2001-04-29T02:25:00.000Z", "updated": "2003-12-04T13:14:30.000Z", "title": "Convergence versus integrability in Birkhoff normal form", "authors": [ "Nguyen Tien Zung" ], "comment": "final version, slightly improved presentation", "categories": [ "math.DS", "math.SG" ], "abstract": "We show that any analytically integrable Hamiltonian system near an equilibrium point admits a convergent Birkhoff normalization. The proof is based on a new, geometric approach to the problem.", "revisions": [ { "version": "v5", "updated": "2003-12-04T13:14:30.000Z" } ], "analyses": { "keywords": [ "birkhoff normal form", "convergence", "integrability", "equilibrium point admits", "convergent birkhoff normalization" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math......4279T" } } }