{ "id": "math/0104196", "version": "v1", "published": "2001-04-19T17:46:59.000Z", "updated": "2001-04-19T17:46:59.000Z", "title": "Moment maps, monodromy and mirror manifolds", "authors": [ "R. P. Thomas" ], "comment": "31 pages, 3 figures; refereed and accepted for publication in \"Symplectic Geometry and mirror symmetry: proceedings of a conference at KIAS, 2000.\"", "journal": "In \"Symplectic geometry and mirror symmetry\" , eds K. Fukaya, Y.-G. Oh, K. Ono and G. Tian. World Scientific, 2001, 467-498.", "categories": [ "math.DG", "hep-th", "math.AG", "math.SG" ], "abstract": "Via considerations of symplectic reduction, monodromy, mirror symmetry and Chern-Simons functionals, a conjecture is proposed on the existence of special Lagrangians in the hamiltonian deformation class of a given Lagrangian submanifold of a Calabi-Yau manifold. It involves a stability condition for graded Lagrangians, and can be proved for the simple case of $T^2$.", "revisions": [ { "version": "v1", "updated": "2001-04-19T17:46:59.000Z" } ], "analyses": { "subjects": [ "14J32" ], "keywords": [ "moment maps", "mirror manifolds", "hamiltonian deformation class", "mirror symmetry", "chern-simons functionals" ], "tags": [ "conference paper", "journal article" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "inspire": 555674, "adsabs": "2001math......4196T" } } }