{ "id": "math/0103205", "version": "v1", "published": "2001-03-29T05:13:11.000Z", "updated": "2001-03-29T05:13:11.000Z", "title": "Moduli of nodal curves on smooth surfaces of general type", "authors": [ "F. Flamini" ], "comment": "Latex2e, 27 pages", "categories": [ "math.AG" ], "abstract": "In this paper we focus on the problem of computing the number of moduli of the so called Severi varieties (denoted by V(|D|, \\delta)), which parametrize universal families of irreducible, \\delta-nodal curves in a complete linear system |D|, on a smooth projective surface S of general type. We determine geometrical and numerical conditions on D and numerical conditions on \\delta ensuring that such number coincides with dim(V(|D|, \\delta). As related facts, we also determines some sharp results concerning the geometry of some Severi varieties.", "revisions": [ { "version": "v1", "updated": "2001-03-29T05:13:11.000Z" } ], "analyses": { "subjects": [ "14J29", "14H10" ], "keywords": [ "general type", "smooth surfaces", "nodal curves", "severi varieties", "complete linear system" ], "note": { "typesetting": "LaTeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math......3205F" } } }