{ "id": "math/0103152", "version": "v2", "published": "2001-03-24T20:53:32.000Z", "updated": "2001-06-11T19:00:38.000Z", "title": "A New Class of Wilf-Equivalent Permutations", "authors": [ "Zvezdelina Stankova-Frenkel", "Julian West" ], "comment": "20 pages, 14 figures, corrected typo", "categories": [ "math.CO" ], "abstract": "For about 10 years, the classification of permutation patterns was thought completed up to length 6. In this paper, we establish a new class of Wilf-equivalent permutation patterns, namely, (n-1,n-2,n,tau)~(n-2,n,n-1,tau) for any tau in S_{n-3}. In particular, at level n=6, this result includes the only missing equivalence (546213)~(465213), and for n=7 it completes the classification of permutation patterns by settling all remaining cases in S_7.", "revisions": [ { "version": "v2", "updated": "2001-06-11T19:00:38.000Z" } ], "analyses": { "keywords": [ "wilf-equivalent permutation patterns", "classification", "missing equivalence", "remaining cases" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math......3152S" } } }