{ "id": "math/0103024", "version": "v1", "published": "2001-03-05T19:10:28.000Z", "updated": "2001-03-05T19:10:28.000Z", "title": "A multidimensional generalization of Shukla's 8-psi-8 summation", "authors": [ "Michael Schlosser" ], "comment": "16 pages, AMS-LaTeX", "journal": "Constr. Approx. 19 (2003), 163-178", "categories": [ "math.CA", "math.CO", "math.QA" ], "abstract": "We give an r-dimensional generalization of H. S. Shukla's very-well-poised 8-psi-8 summation formula. We work in the setting of multiple basic hypergeometric series very-well-poised over the root system A_{r-1}, or equivalently, the unitary group U(r). Our proof, which is already new in the one-dimensional case, utilizes an A_{r-1} nonterminating very-well-poised 6-phi-5 summation by S. C. Milne, a partial fraction decomposition, and analytic continuation.", "revisions": [ { "version": "v1", "updated": "2001-03-05T19:10:28.000Z" } ], "analyses": { "subjects": [ "33D15", "33D67" ], "keywords": [ "multidimensional generalization", "partial fraction decomposition", "multiple basic hypergeometric series", "r-dimensional generalization", "summation formula" ], "tags": [ "journal article" ], "note": { "typesetting": "LaTeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2001math......3024S" } } }